
Introduction

Since implementation of the reform and opening-up 
policy, the Chinese economy has experienced a span of 
rapid growth. The process of a large collection of material 
wealth also gives rise to severe environmental and energy 
problems. In 2013, the total energy consumption  in the 

country equaled up to 3.75 billion tons of standard coal, 
accounting for 22.4% of the world’s total. During the 
same year, China’s total carbon emissions occupied 29% 
of the global total, which made China’s global carbon 
dioxide ranking higher than the United States for the 
first time. Therefore, the international society exerted 
on China unprecedented pressure for carbon emission 
reduction. Meanwhile, the energy consumption per unit 
GDP in the country remained at a high level. For example, 
the unit GDP energy consumption in 2012 was not only 
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Abstract

By establishing an evaluation system of low carbon economic growth efficiency (LCEGE), inclusive of 
carbon sink, a non-radical DEA model with slacks-based measure (SBM) was used to measure provincial 
LCEGEs in China during the period from 1998 to 2013. Based on this data, the spatial auto-correlation of 
Chinese LCEGE was analyzed. Finally, according to the 1998-2013 panel data from 30 provinces across 
the country, the paper built up a spatial panel data model to conduct empirical research on the factors 
influencing LCEGE. The research results show that during the sample period, China’s provincial LCEGEs 
differentiate from each other, and the average LCEGE in eastern coastal provinces phenomenally exceeds 
those of the inland provinces. In terms of the three regions, eastern China witnesses the highest LCEGE, 
which is followed by western China; and central China was last in the ranking. Moran’s I statistic result 
indicates that provincial LCEGEs have significant spatial auto-correlation and tend to cluster. Factors of 
industrial structure, energy consumption structure, and government policy exert a remarkably negative 
effect on LCEGE; while technological innovation, human capital, FDI, and foreign trade lend LCEGE a 
helping hand.
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2.5 times the world average, but also 3.3 times that of 
the United States, seven times that of Japan, and even 
higher than Mexico and Brazil over the same period. 
With respect to EPI, China ranked 116 in 2012, falling 
by 22 places in comparison to ranking 94 in 2006. In 
all, China’s low carbon economic growth efficiency 
(LCEGE) was still relatively low in relation to the level 
of economic development. Therefore, in order to achieve 
energy savings and emissions reductions, it is of great 
significance to achieve one of the 13th Five-Year Plan’s 
targets that the national energy consumption volume per 
unit GDP in 2020 will drop by 40-45% of the consumption 
volume in 2005, and that research will continue into low-
carbon-oriented economic transformation.

For a long time, the economic growth in China has 
been tagged with “large input, high-energy consumption, 
phenomenal expansion, heavy pollution, and low 
efficiency.” As a result, economic growth modes have 
become a research focus at home and abroad. Tradi-
tionally, the mere surge in GDP demands greater input 
of funds, energy, and other factors. As this has already 
failed to comply with the national requirement of “low 
carbon society” construction, the country steers toward 
the growth of total factor productivity (TFP). However, 
despite plenty of achievements of existing empirical 
research into the TFP of the Chinese economy [1], the 
impact of resource and environmental constraints on 
national economic efficiency is neglected. Such studies 
only measure expected outputs such as GDP, but overlook 
CO2 emissions, SO2 emissions, and other undesirable 
outputs. These research results actually distort both the 
evaluation of China’s LCEGE and understandings of the 
concept of TFP.

LCEGE is differentiated from traditional economic 
efficiency in that national or local economic efficiency 
factors are evaluated only when resource input and 
environmental costs are taken into consideration. Similar 
concepts occur with “green economic efficiency,” “sus-
tainable growth,” and “energy environment efficiency” 
[2-3]. The TFP definition is a prerequisite for the definition 
of LCEGE. TFP is the difference between the growth 
rate of output and the growth rate of factor input, which 
represents the unexplained part of economic growth and 
reflects the quality of economic growth [4]. LCEGE is the 
kind of TFP that considers the constraints of resources 
and the environment [5]. Specifically, on the one hand 
LCEGE is an evaluation index of economic efficiency 
in a locality; on the other hand, in terms of low carbon 
economic growth, resource input and undesirable output 
undergo thorough consideration with respect to the way 
by which resource utilization and environmental costs are 
incorporated into the process of production.

In recent years, more and more scholars have begun 
to explore the factors influencing China’s TFP in relation 
to the environment. Wei [6] used the non-parametric 
Malmquist index to measure China’s TFP, and carried out 
VAR-based empirical research on the influence of trade 
openness and human resources on TFP. The corresponding 
result showed that these two factors exerted a remarkable 

effect on TFP. By taking the environmental factor into 
account, Yue and Liu [7] analyzed the influencing factors 
of industrial growth efficiency in China, which were 
summarized into positive factors (marketization level, 
FDI, and research innovation) and negative factors (market 
competition, expenditure on technology introduction, and 
technological transformation). Wang et al. [8] empirically 
studied the factors impacting environmental efficiency 
and environmental TFP growth, and found out that GDP 
per capita, structural factors, government policy, and 
environmental awareness carried weight.

Most of the said studies are based on DEA, with 
which energy, environmental performance and their 
influencing factors are analyzed from the perspective of 
TFP. Despite the fact that the above TFP measurement 
methods take a comprehensive account of labor, input 
of energy and capital, economic growth, and carbon 
emissions (carbon source), carbon sink was ignored 
as another important factor during the process of low-
carbon economy transformation [9]. In the past few 
years, the central government has intensified the effort 
to protect bio-environments with active promotion of 
afforestation and conversion of degraded farmland into 
forest and grassland. Under the positive response of local 
governments, afforestation engineering has increased 
year by year. When the quality of economic growth in 
different areas is assessed with the mere criterion of 
carbon emission reduction, it will inevitably mandate 
such means as brownouts. As a result, the initiative of 
afforestation will be damaged, to the disadvantage of 
the transformation of economic development modes in 
China. Therefore, it is necessary to incorporate carbon 
sink factors due to afforestation into the evaluation 
system, so that the TFP growth assessment approach can 
be ever more fair and effective. Given this, this paper 
incorporated carbon sink factors due to afforestation 
into the TFP growth evaluation system, where the SBM 
model was used to measure the 1998-2013 LCEGEs of  
30 provinces in China. On this basis, a spatial econometric 
model was established. Finally, the factors that influence 
LCEGE were empirically analyzed.

Material and Methods

SBM Model

Using the DEA method to measure the efficiency and 
productivity of similar decision-making units has proven 
to be a very effective tool, but the relative efficiency 
evaluation of DEA requires that the input must be reduced 
as much as possible, and the output must be expanded as 
much as possible [10]. These undesirable outputs must be 
reduced as much as possible in order to achieve the best 
economic efficiency, while the traditional DEA model can 
only make it increase, contrary to the original intention of 
efficiency evaluation. In reality, the production process 
produces not only good products but often also creates 
significant by-products, known as the “non-expected 
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output.” In short, the biggest problem of the traditional 
DEA model is that it cannot solve the problem of the 
slacks of input and output. Therefore, this paper chose 
the SBM model to measure the efficiency of China’s low-
carbon economic growth.

The SBM model is essentially the DEA model with a 
slacks-based measurement that was established by Tone 
in 2001 [11]. Meanwhile, room for improvement of all 
input variables and output variables is considered and 
reflected in an objective function, with the final form of a 
value between 0-1. 

Assuming that a production system has n de-
cision-making units and m production factors, with the 
result of s1 desirable outputs and s2 undesirable outputs, 
and that the variables 1 2( , ,..., ) m n

nX x x x R ×
+= ∈ ,

1 2( , ,..., )g g g g s n
nY y y y R ×

+= ∈ , 1 2( , ,..., )b b b b s n
nY y y y R ×

+= ∈
represent factor input, desirable output, and undesirable 
output, respectively. If ( , , )g bDMU x y y= denotes the 
decision-making unit to be measured, then the possible 
production set is obtained as:

( )( ) { , , ( , ) , , , 0}t g b g b g g b bP x y y x produce y y x X y yλ γ λ γ λ= ≥ ≤ ≥ ≥
  

( )( ) { , , ( , ) , , , 0}t g b g b g g b bP x y y x produce y y x X y yλ γ λ γ λ= ≥ ≤ ≥ ≥
       (1)

This equation shows that the production technology 
model has the following important features: the 
undesirable output and expected output have weak 
disposability and zero binding. Inequality constraints 
show that the inputs and outputs are expected to have 
strong disposability as well as represent a cross-sectional 
observation of non-negative weights. Building upon the 
work of Zhang and Choi [12], we applied the improved 
SBM model to deal with these features and this process 
can be described as follows [13]:

(2)

… where: x ms R− ∈ , y ds R+ ∈ , and 
b us R− ∈  represent the 

slack variables of input, desirable output, and undesirable 
output, respectively. Their positive values represent the 
respective excessive input, insufficient desirable output, 
and surplus undesirable output. The numerator in equation 

ρ indicates the mean reduction ratio of the actual input 
of production DMU to production frontier, i.e., input 
inefficiency; while the denominator demonstrates the 
mean expansion ratio of the actual input of production 
DMU to production frontier, i.e., output inefficiency. 
With regards to a certain DMU, the technology is efficient 
when and only when ρ = 1, namely 0xs − = , 0ys + = , and 

0bs − = when ρ<1. This means that the DMU is inefficient, 
and that it can become efficient through the elimination of 
input slack and output slack. Finally, the SBM model was 
chosen to calculate the LCEGE of different provinces in 
China.

Spatial Auto-Regressive Coefficients

Geospatial effect is the main interactive spatial effect 
between LCEGEs, which features the geospatial attribute 
of observations in geographical space. The concept of 
geospatial effect originates from the theory of spatial 
economics. The pair of characteristics that reflects 
geospatial effect are spatial auto-correlation and spatial 
heterogeneity. Spatial auto-correlation exists in the spatial 
agglomeration effect of LCEGE generated from the 
function of spatial spillover and the expansion mechanism 
of neighboring provinces. Spatial heterogeneity is a 
phenomenon of spatial outliers that happens when the 
discrepancies of central regions and phenomenal regions 
are notable enough as a result of the spatial unevenness 
of LCEGE. In general, the spatial effect is reflected by 
Global Moran I, a classic spatial auto-correlation statistic 
that is derived from Z-score statistics, according to the 
research method initiated by Moran in 1948 [14]. The 
specific calculation formula is:

1 1

2

1 1 1

( )( )
'

( )

n n

ij i j
i j

n n n

i ij
i i j

W x x x xnMoran s I
x x W

= =

= = =

− −∑ ∑
=

−∑ ∑ ∑

      (3)

…where Wij is the spatial weight matrix, n denotes 
the number of spatial units, and xi and xj represent the 
observation values of targeted variables in areas i and 
j, respectively. ( ) /i ix x n= ∑  is the mean value of the 
observation values. Generally, Global Moran I falls  
within the interval of [-1, 1]. When Moran's I = – 1, the 
observed variable is totally negatively correlated; when 
Moran's I = 1, the observed variable is totally positively 
correlated; and when Moran's I = 0, the observed variable 
is of no spatial correlation.

To identify the authenticity of the obtained Moran's, 
a significance test should be done. The frequently used 
test formula is based on the hypothesis of Z-score normal 
distribution, which is shown as follows:

         (4)
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Spatial Panel Data Models: the Spatial 
Auto-Correlation Model (SAR) and the Spatial 

Error Model (SEM)

The premise of a classic econometric model is the 
spatial homogeneity and independent identical distribution 
(iid) of observations, fixed explanatory variables, etc. 
However, non-spatial econometric models ignore the 
spatial auto-correlation of residuals when using the least 
square method for parametric simulation. As a result, 
there is likely to be large deviations of estimated results 
from actual results. Therefore, the spatial econometric 
model is a necessity in addressing problems arising 
from spatial auto-correlation of observations. Currently, 
classic spatial econometric models include the spatial 
auto regression model (SAR) and the spatial error model 
(SEM). The definition of SAR is [15]:

                   (5)

…where y is the explained variable; ρ and λ are spatial 
auto-correlation parameters that indicate the degree of 
spatial dependence of explained variables themselves; W 
is a n × n spatial weight matrix, and the most commonly 
used spatial weight matrix is the 0 and 1 spatial adjacency 
matrix; W y is the spatial auto-correlation variable; and ε 
is the random error.

The definition of SEM is [16]:

                      (6)

…where λ is the spatial error coefficient at n × 1 order, 
which indicates the degree of spatial correlation of 
residues; μ is the random error that observes normal 
distribution; and β is the regression parameter of the major 
model that detects the impact effect of X on y. It can be 
seen that the spatial correlation of SEM is reflected by the 
degree of spatial random error.

Besides, in order to offer efficacious policy suggestions 
for the improvement of Chinese LCEGE, the influencing 
factors were chosen from different perspectives including 
the economy, society, and politics. Meanwhile, given that 
the employment of OLS estimation that spares spatial 
effects will cause deviations once provincial LCEGEs 
are significantly spatially correlated with each other, we 
preferred the spatial econometric model to analyze the 
factors influencing the LCEGEs of 30 Chinese provinces. 
As the data adopted herein was based on the panel data 
of the 30 provinces, it was necessary to select from fixed 
effects and stochastic effects during the process of model 
regression. The fixed effect meant that individual effects 
exerted greater effect on the regression variables. For the 

stochastic effect, there was no interlink between individual 
effects and regression variables. Since the entry point of 
the empirical research in the paper was individual effects, 
the fixed effect fit the research better than the stochastic 
effect did. Finally, based on equation (5) and equation (6), 
the paper established the fixed-effect-based spatial panel 
data model, which was expressed as follows:

, 1 , 2 , 3 , 4 ,

5 , 6 , 7 , , ,

, , ,

( )
i t i t i t i t i t i t

ji t i t i t ij i t i t

ji t ij i t i t

LCEGE IS tI hC FDI
Ft ESC GP W LCEGE

W u

α φ β β β β
β β β δ µ

µ λ ε

= + + + + + +
+ + + +∑

= ∗ +∑                  
(7)

This model is a spatial fixed-effect model, where δ 
and λ denote the spatial auto-correlation coefficient and 
spatial error coefficient, respectively. If δ significance 
is 0, the model becomes SEM; if λ significance is 0, the 
model switches to SAR. αi and φt represent the spatial 
fixed effect and the time-fixed effect.

Variables and Data Sources

Variables and Data Sources for SBM

In recent years, the central government has gradually 
strengthened its environmental protection work, 
vigorously carrying out afforestation and reforestation, 
and the local governments are also acting accordingly. If 
at the time of evaluation of economic growth efficiency 
in areas, the focus was only on reducing carbon dioxide 
reduction, the results would lead local governments 
to take necessary measures, such as power cuts, etc. 
In this way, afforestation is bound to be affected, and 
thus will produce a negative impact on low-carbon 
economy. Therefore, in the study on low-carbon economy 
by Lei and Yu [17], they proposed a “forest area” as a 
major factor in the formation of a “carbon sink” and 
proposed carbon cycle total factor productivity (CCTFP). 
Referencing this idea, this paper presents LCEGE, also 
known as total factor productivity (TFP) of low-carbon 
economy, whose assessment system contains a section 
on capital, labor, energy consumption, afforestation, 
GDP, and CO2. Then, in the perspective of inputs and 
outputs from the definition of economics, low-carbon 
economic growth efficiency refers to getting maximum 
economic output and minimal CO2 without increasing 
the underlying capital, labor, energy consumption, and 
afforestation. Compared to the previous TFP evaluation 
system, the most significant feature of the evaluation 
system, “afforestation” is considered an undesired input 
and joined into the assessment system.

In terms of the whole LCEGE evaluation system, 
the panel data of the 30 provinces was collected from 
1998 to 2013 in China. The data on the six variables 
included capital stock, labor force, energy consumption, 
afforestation, GDP, and CO2. Capital stock, labor force, 
energy consumption, and afforestation were input 
variables. GDP was the desirable output variable, and 
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CO2 was the undesirable output variable. Tibet was not 
considered due to the unavailability or inconsistency of 
its data. Data for energy consumption was obtained from 
the China Energy Statistical Yearbook while data for the 
other variables came from the China Statistical Yearbook 
[18-19]. Table 1 provides detailed information on these six 
variables and Table 2 shows descriptive statistics of the 
input and output variables.

Variables and Data Sources for Influencing Provincial 
LCEGEs

LCEGE improvement is the essence of sustainable 
economic development in China. Research into factors 
affecting LCEGE functions as a direct and effective 
promotion for sustainable economic growth in various 
localities. During their analysis of the steps to sustainable 
low-carbon economic transformation, Foxon [21] 
proposed a framework composed of five factors: eco-
system, technology, organization, business strategy, 
and consumption practice. Pan et al. [22] analyzed 
the influencing factors of low-carbon economy from 

four perspectives, namely the development stage, low-
carbon technology, consumption mode, and resource 
endowment. This paper combined the above research 
thoughts, and expounded five aspects that the low-carbon 
economy responded to, including industrial structure, 
technological advance, opening up, resource endowment, 
and government policies. 

The function mechanism of these was:
Regarding industrial structure. The ratio of 

secondary industrial output to GDP was used to measure 
the changing conditions of regional industrial structure. 
According to Luo and Li [23], industrial structure 
change is a crucial beacon to economic expansion, and 
in particular the change of secondary industry proportion 
scales the level of economic growth. Compared to 
primary and tertiary industries, secondary industry has 
the closest relations with regional carbon emissions. 
The reason for this is that resource-intensive industries 
occupy large percentages of secondary industry, which 
mainly contributes to national carbon emissions as 
a heavy energy-consuming industry. The increase 
in the proportion of China’s secondary industry will 
significantly increase the amount of energy consumption. 

Table 1. Definition of variables for SB.

Variables Data compilation

Capital stock
The actual annual capital stock at 1952 prices, which is measured by the perpetual inventory method  

Kt = I + (1 – δ) Kt–1 . Kt represents the tth-phase capital stock, It is the tth-phase investment, and δ is the tth-phase 
capital depreciation rate [20].

Labor force Number of persons engaged (10,000).

Energy 
consumption

Refers to use of primary energy before transformation to other end-use fuels, which is equal to indigenous 
production plus imports and stock changes, minus exports and fuels supplied to ships and aircraft engaged in 

international transport.

Afforestation New afforestation area in various forms of forest, shrubwood and other forms, which were formed or restored by 
artificial measures.

GDP Uses expenditure-side real GDP at chained purchasing power parities (in 100 million at 1952 prices)

CO2

The amount of CO2 is calculated according to the UN Framework Convention on Climate Change passed by the 
IPCC (2006) and reference methods in Chapter 6, Volume II (Energy) of Guidelines for National Greenhouse 

Gas Inventories in the Kyoto Protocol. The specific formula is 
3

2
1

(44 /12)i i i i
i

CO E nNCV CEF COF
=

= × × × ×∑ . 
CO2 denotes the estimated amount of emitted carbon dioxide, i = 1, 2, 3 denotes that the corresponding equation 
represents coal, petroleum, and gas, respectively. E denotes the amount of energy consumption. NCV denotes the 
net calorific value of energy, CEF denotes the coefficient of carbon dioxide emissions, COF denotes the oxidant 

factor of coal, and 44 and 12 denote the molecular weight of carbon dioxide and carbon.

Table 2. Descriptive statistics of inputs and outputs.

Variables Unit Mean SD Min Max

Capital stock ¥100 million 4,161.72 4,933.71 107.81 28,973.40

Labor force 104 workers 2,396.12 1,599.91 254.80 6,554.30

Energy consumption 104 tons 8,134.89 6,559.86 196.50 38,592.06

Afforestation 103hektares 178.57 175.75 0.71 907.40

GDP ¥100 million 1,848.28 1,847.76 53.58 10,059.71

CO2 104 tons 21,063.49 17,161.41 454.95 99,367.51
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Therefore, the industrial structure has a negative effect 
on China’s LCEGE, and it was expected that the variable 
coefficient symbol would be negative.

Regarding technological advances. For this aspect, 
a pair of indices was chosen: technological innovation 
(TI), which referred to the proportion of regional R&D 
input in GDP, and human capital (HC), which was the 
proportion of people with high school certificates or 
above in the total population. The increment in R&D 
input can partly substitute for production factors, thus 
helping to upgrade industrial structures, reducing 
regional energy consumption intensity, and enhancing 
energy consumption efficiency as well. Meanwhile, 
innovation development benefits the improvement of 
regional carbon emission reduction capacity because 
the emission reduction cost in polluted regions can be 
lowered prominently in order that the coefficient of the 
technological innovation is anticipated to be positive. The 
human capital functions in a way that not only improves 
the competence and skills of workers, but also helps to 
raise environmental consciousness [24]. Therefore, the 
coefficient of human capital was also anticipated to be 
positive.

Regarding opening-up. For this aspect, a pair of 
indices was chosen: FDI, which is the proportion of 
foreign direct investment volume in GDP, and foreign 
trade (FT), which is the proportion of values of input 
and output in GDP. In a society with an open economy, 
national economic growth rests not only on technological 
progress and policies, but also on economic relations with 
other countries, including FDI and FT. As an integration of 
capital stock, knowledge, and technologies, the opening-
up initiatives play an important role in remedying the 
regional environment in addition to other advantages such 
as bridging domestic savings gaps, improving foreign 
trade conditions, and driving economic growth. Grimes 
and Kento [25] also found that FDI expansion facilitates 
the introduction and absorption of foreign capital  
and technologies, which acts positively in reducing 
regional energy consumption intensities and raising 
energy utility rates. So a positive value for the coefficient 

symbol for FDI was expected. As an engine for economic 
growth, FT is conducive to the progress of domestic 
resource allocation and technological efficiency. 
Therefore, the coefficient of FT was also anticipated to 
be positive.

Regarding resource endowment. This aspect is 
represented by ECS, the proportion of coal consumption 
volume with respect to total energy consumption volume. 
Under the action of resource endowment, energy is 
consumed on the spot along with its production. As a 
major coal-based country, China consumes coal in most 
cases. Compared to clean energies, including hydro, 
bio, wind, and nuclear, coal belongs to the group of high 
carbon energy sources. Thus, the greater the proportion of  
coal consumption accounted for the total energy 
consumption, and the higher the total amount of carbon 
emissions in the region, the more negative the coefficient 
of the variable.

Regarding government policy. The proportion 
of government fiscal expenditure in GDP was used in 
this paper to measure the double-edged dynamics of 
government functions on the environment. On the one 
hand, adequate government investment helps improve 
long-term economic growth efficiency, strengthen 
efforts in pollution control, and further reinforce energy 
conservation and emission reduction at the regional level. 
On the other hand, surplus government intervention will 
distort resource allocation, giving rise to negative effects 
on economic growth and environmental protection. 
Government intervention on China’s LCEGE may be a 
positive impact, but may also be a negative impact – the 
key lies in the role of which mechanism has a stronger 
effect. Therefore, the coefficient of the variable was 
anticipated to be uncertain.

This paper examined the impact on changes of 
LCEGE of the following variables: industrial structure 
(IS), technological innovation (TI), human capital (HC), 
foreign direct investment (FDI), foreign trade (FT), 
energy consumption structure (ECS), and government 
policy (GP). The descriptions of the variables are listed 
in Table 3.

Table 3. Description of variables influencing LCEGE.

Variable name Variable definition Units Expected Date sources

Industrial structure (IS)
Value  of the   secondary

industry / Total GDP
% Negative

China Energy Statistical 
Yearbook; China 

Statistical Yearbook;
Compilation of Statistics 

of 60 Years in New 
China [26].

Technological innovation (TI) R&D value / Total GDP % Positive

Human capital (HC)
People with high school certificates / total 

people
% Positive

Foreign direct investment (FDI) Foreign direct investment volume / Total GDP % Positive

Foreign trade (FT) Values of input and output  / Total GDP % Positive

Energy consumption
Structure (ECS) Coal consumption / Total energy consumption % Negative

Government policy (GP) Government general budget expenditure / Total 
GDP % Uncertain
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Results and Discussion

Analysis of the Inter-Provincial and Regional 
Differences in LCEGE

Based on Formula (2), we ran the SBM in DEA and 
obtained 30 provincial LCEGEs from 1998 to 2013, 
as shown in Table 4. According to the mean provincial 
LCEGE, the first five provinces in the ranking were 
Liaoning, Yunnan, Fujian, Tianjin, and Shanghai, all 
of whose mean values exceeded 0.8. They approach 
the frontier of production functions. The bottom five 
provinces were Qinghai, Jiangxi, Shanxi, Xinjiang, and 
Guizhou in sequence. Their mean values were no more 
than 0.5. As can be seen from this, China’s provincial 
LCEGEs differentiate from each other. Most provinces 
with high LCEGE were located in eastern coastal areas, 
while major low-LCEGE provinces were distributed in 
inland China. A noteworthy fact is that the LCEGE of 
Yunnan, a western province, remained at a high level 
for the last few years, and the main cause was that 
Yunnan itself is agriculture-oriented, with large areas of 
afforestation.

The results of the above SBM model show that there 
are great differences in the low-carbon development 
between different provinces in China. Therefore, in order 
to promote the development of a low-carbon economy, 
different provinces should develop a differentiated low-
carbon economy transformation strategy. Provinces such 
as Jiangxi, Qinghai, Shanxi, Xinjiang, and Guizhou, 
whose LCEGEs were low, indicate that the economic 
growth model of “high pollution, high emission, 
and low efficiency” in these provinces is still deep-
rooted. Therefore, to achieve low-carbon development, 
it is urgent for these provinces to focus on implementing 
energy-saving emissions reduction strategies and realizing 
the transformation of the economic growth mode. 
Provinces such as Yunnan, Liaoning, Fujian, Tianjin, 
and Shanghai had high LCEGE, which indicates that the 
low-carbon economic development of these provinces 
was more successful. Given that the level of economic 
development in different provinces is not the same, for 
the low level of economic development in Yunnan, to 
promote low-carbon economy development, the focus 
should be on accelerating technological progress and 
optimizing the industrial structure. For the higher level 
of economic development in Fujian, Liaoning, Tianjin, 
and Shanghai, it is recommended to strengthen publicity, 
from improving the environmental awareness of residents 
to proceed with and further strengthen the transformation 
of low-carbon economic development.

Table 4 also demonstrates the significant differences 
in LCEGE among the major regions in China: eastern, 
western, and central (eastern China includes Beijing, 
Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, 
Shandong, Guangdong, Hainan, and Liaoning; central 
China includes Shanxi, Jilin, Heilongjiang, Anhui, 
Jiangxi, Henan, Hubei, and Hunan; western China 

includes Inner Mongolia, Guangxi, Chongqing, Sichuan, 
Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, 
Ningxia, and Xinjiang). LCEGEs in eastern China were 
much higher than those in central and western China. 
From the perspective of average LCEGE in the three 
economic zones, the mean eastern LCEGE of 0.7848 was 
higher than the national mean value of 0.6504, but the 
mean western and central LCEGE respective values of 
0.5498 and 0.5893 were both much lower than the national 
mean value. The cause of the eastern LCEGE being the 
highest was that on the one hand, the eastern areas have 
fully developed their economy, with relatively advanced 
emission technologies and sensible industry structures; 
but on the other hand, residents in eastern regions have 
stronger environmental awareness, and construct more 
afforestation engineering. Another finding of our research 
was that western LCEGE surpasses central LCEGE. 
This is because central areas are largely composed of 
provinces with strong resource endowments, such as 
Shanxi and Guizhou (both of which are major provinces 
for coal manufacturing and coal consumption), which 
means that the carbon emission levels in these provinces 
is relatively high. What is more, the industrial structure 
and ecological protection in western areas are better than 
central areas of the country.

Spatial Correlation Analysis 
of Provincial LCEGE

With the spatial adjacent matrices in formula (3-4) 
as spatial weight matrices, Geoda software was run to 
observe the values of provincial LCEGEs from 1998 to 
2013. Table 5 shows the Global Moran I index, where all 
the values have passed the significance test at the 10% level 
and are seen to be positive. This result fully shows that the 
regional LCEGEs in China possess strong and positive 
spatial auto-correlation, and that spatial auto-correlation 
plays an important part in the changes of LCEGE in the 
country. Spatially, LCEGEs are not distributed randomly, 
but instead cluster together, especially when considering 
neighboring provinces. At the same time, the Moran I 
index of LCEGE further reflected the spatial distribution 
pattern of provincial LCEGE, that is, most of the 
neighboring provinces showed two strong spatial effects of 
high- and low-value agglomerations. Therefore, regarding 
the reality of low-carbon economic development, spatial 
effect is an important factor that should not be ignored.  
In view of this, each province should not be regarded as  
an independent individual land but full attention should  
be paid to the links with other provinces in the area. 
Different provinces should break the barriers, further 
strengthen exchanges and cooperation, realize the 
complementary advantages of resource endowments, 
and jointly promote the transformation of low-carbon 
economic development. Beyond that, if we ignore the 
significant impact of the spatial effect on LCEGE among 
provinces, it is possible to get significant deviations in the 
estimated model.
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Table 4. Provincial LCEGE in China.

Year 1998 2000 2002 2004 2006 2008 2010 2012 Average

Beijing 0.5980 0.6258 0.6640 0.6818 0.7301 0.7782 0.8371 0.9252 0.7424

Tianjin 0.7023 0.7209 0.7522 0.8540 1.0000 0.9296 1.0000 1.0000 0.8789

Hebei 0.5711 0.5691 0.5730 0.5838 0.6089 0.6270 0.6467 0.6543 0.6045

Shanxi 0.4040 0.4117 0.4208 0.4447 0.4238 0.4319 0.4548 0.4790 0.4372

Inner Mongolia 0.4565 0.4629 0.4673 0.4490 0.4487 0.4894 0.4906 0.4858 0.4706

Liaoning 0.9044 0.9192 0.9918 1.0000 1.0000 1.0000 1.0000 1.0000 0.9839

Jilin 0.5655 0.5885 0.5978 0.5880 0.6108 0.6230 0.6197 0.6275 0.6060

Heilongjiang 0.4669 0.4845 0.5287 0.5362 0.6206 0.5555 0.5914 0.6129 0.5497

Shanghai 0.7481 0.7605 0.7857 0.8128 0.8607 0.9248 1.0000 1.0000 0.8691

Jiangsu 0.7162 0.6840 0.6957 0.6956 0.6888 0.7054 0.7151 0.7158 0.6997

Zhejiang 0.7221 0.7328 0.7544 0.7540 0.7740 0.8022 0.7865 0.7790 0.7633

Anhui 0.6092 0.6163 0.6269 0.6534 0.6494 0.6414 0.6405 0.6990 0.6430

Fujian 0.9062 0.8973 0.9433 1.0000 0.9355 0.8874 0.9313 0.8667 0.9042

Jiangxi 0.4303 0.4513 0.4555 0.4295 0.4300 0.4417 0.4454 0.4584 0.4441

Shandong 0.5943 0.6446 0.6188 0.6101 0.6091 0.6315 0.6515 0.6582 0.6273

Henan 0.4917 0.4862 0.4795 0.4590 0.4284 0.4516 0.4588 0.4836 0.4732

Hubei 0.6124 0.6051 0.6071 0.6008 0.6011 0.6409 0.6725 0.6873 0.6294

Hunan 0.6053 0.6461 0.6310 0.6029 0.5770 0.5926 0.6223 0.6574 0.6156

Guangdong 0.7167 0.7011 0.6991 0.7316 0.7529 0.7535 0.7269 0.7276 0.7264

Guangxi 0.7132 0.7173 0.7535 0.6975 0.6967 0.6993 0.6512 0.6063 0.6874

Hainan 1.0000 1.0000 0.8009 0.8175 0.8143 0.7421 0.7790 0.7811 0.8335

Chongqing 0.7630 0.7466 0.7422 0.7699 0.7372 0.7541 0.7926 0.8771 0.7744

Sichuan 0.8089 0.8369 0.8362 0.8015 0.8296 0.8483 0.8916 1.0000 0.8624

Guizhou 0.3339 0.3521 0.3499 0.3179 0.3312 0.3543 0.3578 0.3701 0.3460

Yunnan 1.0000 0.9970 1.0000 1.0000 0.8767 0.8878 0.8757 0.9208 0.9317

Shaanxi 0.5081 0.5546 0.5442 0.5412 0.5514 0.5886 0.5981 0.6028 0.5647

Gansu 0.4810 0.4764 0.4612 0.4590 0.4958 0.5117 0.5343 0.5552 0.4989

Qinghai 0.4655 0.4581 0.4308 0.4207 0.4754 0.4490 0.5003 0.4824 0.4541

Ningxia 0.5422 0.5698 0.4574 0.4472 0.4289 0.4369 0.4519 0.4675 0.4694

Xinjiang 0.3839 0.4043 0.4204 0.4243 0.4180 0.4342 0.4383 0.4415 0.4221

East China 0.7436 0.7505 0.7526 0.7765 0.7977 0.7983 0.8249 0.8280 0.7848

Central China 0.5232 0.5362 0.5434 0.5393 0.5426 0.5473 0.5632 0.5881 0.5498

West China 0.5869 0.5978 0.5876 0.5753 0.5718 0.5867 0.5984 0.6190 0.5893

Nationwide 0.6274 0.6374 0.6363 0.6395 0.6468 0.6538 0.6721 0.6874 0.6504

Note: Due to limitation of space, only values of LCEGE for the even-numbered years are listed.
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Analysis of Factors Influencing LCEGE

When performing spatial econometric regression, 
the applicability of the spatial econometric method 
should be verified first, and then a choice between SAR 
and SEM can be made. LMsar statistics and LMerr 
statistics develop the basis for such verification, i.e. if 
they are significant, the spatial econometric model will 
be adoptable. Meanwhile, according to the Monte Carlo 
simulation findings from Anselin and Ray [27], LMsar 
statistics and LMerr statistics can be used for selection 
between SAR and SEM. There are four kinds of fixed 
effect models: mixture model, spatial fixed effect model, 
time fixed effect model, and two-way fixed effect model. 
It is necessary to make a comparison in search of the 

most suitable model as the sample model in the following 
empirical research. In this light, Matlab 7.11 was adopted 
to provide the LMsar values and LMerr values for all the 
models in an attempt to demonstrate which model was 
more appropriate.

As can be seen from Table 6, all the models had 
positive LMsar and LMerr values, and they all passed 
the significance tests at the 1%, 5%, and 10% levels. This 
result shows that they are all theoretically adoptable. 
Meanwhile, according to the comparison between LMsar 
and LMerr statistics, the mixture model, spatial fixed 
effect model, and the time fixed effect model had slightly 
smaller LMsar statistics than LMerr statistics, so they fit 
better with SEM. Similarly, for the two-way fixed effect 
model with larger LMsar statistics than LMerr statistics, 
SAR performs better as a spatial model.

The above findings reflect the fact that spatial 
correlation problems will inevitably occur on variable 
residuals when non-spatial panel models, inclusive of the 
variables, undergo regression. Moreover, such problems 
are basically beyond the scope of OLS, or at least, the OLS 
estimation result deviates from the actual result. Given 
this, the maximum likelihood method is recommended 
to apply to the estimation of spatial econometric models. 
Finally, the spatial econometric method was used in the 
paper to reappraise the non-spatial panel data. Table 6 
shows the estimation results of spatial models under the 
said fixed effects.

As can be seen from Table 7, the W*dep.var. statistics 
and spat.aut. statistics of all of the four fixed-effect models 

Table 5. Moran I index of LCEGE in China.

Year Moran I E(I) Mean Sd(I) Z-value

1998 0.1267* -0.0345 -0.0387 0.1190 1.3546

1999 0.1263* -0.0345 -0.0354 0.1202 1.3378

2000 0.1150* -0.0345 -0.0429 0.1217 1.2284

2001 0.1080* -0.0345 -0.0389 0.1185 1.2025

2002 0.1229* -0.0345 -0.0362 0.1185 1.3283

2003 0.1190* -0.0345 -0.0384 0.1180 1.3008

2004 0.1117* -0.0345 -0.0419 0.1166 1.2539

2005 0.1557* -0.0345 -0.0369 0.1229 1.5476

2006 0.1484* -0.0345 -0.0321 0.1170 1.5632

2007 0.1526* -0.0345 -0.0369 0.1203 1.5553

2008 0.1641* -0.0345 -0.0345 0.1197 1.6591

2009 0.1475* -0.0345 -0.0374 0.1181 1.5411

2010 0.1500* -0.0345 -0.0378 0.1190 1.5504

2011 0.1341* -0.0345 -0.0411 0.1173 1.4373

2012 0.1318* -0.0345 -0.0424 0.1222 1.3609

2013 0.1347* -0.0345 -0.0436 0.1224 1.3824

*Different tests with 10% level of significance.

Table 6. LM statistical results under different fixed effects.

Model Sample Test Statistics P-value

Mixture 480
LM – sar 2.6351 0.0980

LM – err 2.8579 0.0830

Spatial Fixed 
Effect 480

LM – sar 17.4111 0.0000

LM – err 18.4143 0.0000

Time Fixed 
Effect 480

LM – sar 2.8044 0.0887

LM – err 3.8181 0.0507

Two-Way Fixed 
Effect 480

LM – sar 12.9850 0.0003

LM – err 6.7782 0.0092
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in SEM and SAR passed the significance tests at the 1%, 
5%, and 10% levels. This result fully indicated that the 
spatial effect actually played a vital role in research on 
the factors influencing LCEGE. The neglect of spatial 
effect may distort the obtained result. Meanwhile, 
through comparison, the estimation coefficients of SEM 
and SAR were similar in value and shared the same 
sign, which meant that the spatial econometric model 
could produce results with great stability. The two-way 
fixed-effect model had the maximum goodness of fit 
and log likelihood in contrast to the rest, corresponding 
to the strongest explanation. The goodness of fit and log 
likelihood of the two-way fixed-effect model in SAR 
both exceeded those in SEM. In summary, the SAR two-
way fixed-effect model performed the best in achieving 
the estimation results in relation to spatial econometrics. 
Therefore, priority should be given to the actual meanings 
of estimation coefficients based on this model.

First, according to the results, IS exerted a negative 
effect on LCEGE at the 1% significance level, which 
explains the harm to LCEGE that was caused by the 
increase of the secondary industry ratio. Currently, the 
secondary industry in the country is still surging as 
a relatively large proportion of the national economy. 
Statistics show that in terms of the building blocks of 
domestic IS, secondary industry output occupies as large 
as 43.9% of GDP, while the primary industry output 
and the tertiary industry output account for 10.0% and 
46.1% of GDP, respectively [19]. The slow growth in the 

tertiary industry is a reflection of its low level such that 
it is lagging far behind the dominant tertiary industries 
in developed countries. In particular, along with the 
accelerated progress of industrialization, the constantly 
developing secondary industry acts and will continue to 
act as a significant driving force for economic growth. 
With secondary industry as the major energy-consuming 
industry, China is at risk of obstructions in energy 
conservation, emission reduction, and economic growth 
transformation at the regional level.

Second, tI exerted a greatly positive effect on 
LCEGE and is therefore a crucial path towards LCEGE 
improvement. Thanks to the ever-upgrading regional 
technologies, the energy consumption intensity in 
the country witnessed a downward trend, with a 90% 
recorded reduction over the past 16 years by dropping 
from 1.61 in 1998 to 0.66 in 2013 [19]. In addition, the 
importance of technology research and development on 
the one hand shows technological advances promoting 
the enterprises’ LCEGE to rise, and realizes low-carbon 
energy consumption substitution step by step; on the other 
hand, technological progress helps strengthen the local 
ability to discharge and control pollution. Both of the 
advantages lead to the constant enhancement of LCEGE.

Third, hC exerted a positive effect on LCEGE at the 
1% significance level, which explains two matters: 

The continuously increasing regional human capital 
levels result in the non-stop rise in skills and competency 
of workers. Accordingly, workers have access to more 

Variables
SAR SEM

Mixture Spatial Fixed 
Effect

Time Fixed 
Effect

Two-Way 
Fixed Effect Mixture Spatial Fixed 

Effect
Time Fixed 

Effect
Two-Way 

Fixed Effect

IS -0.3171***
(-3.1723)

-0.2673***
(-5.1604)

-0.3304***
(-3.2283)

-0.1960**
(-3.5228)

-0.3538***
(-3.5985)

-0.2599***
(-5.0299)

-0.3554***
(-3.5879)

-0.2110***
(-3.8533)

 tI -0.0054 
(-0.7347)

0.0113**
(2.5062)

0.0033
(0.3783)

0.0222***
(3.2271)

-0.0046
(-0.6311)

0.0218***
(4.4909)

0.0129*
(1.5112)

0.0290***
(4.0439)

HC -0.1763 
 (-1.0362)

0.5030***
(4.4552)

0.0085
(0.0446)

0.7519***
(5.9158)

-0.2084
(-1.2724)

0.4772***
(4.1117)

0.0883***
(0.5137)

0.6801***
(5.3314)

FDI 0.0691***  
(12.156)

0.0045
(1.2192)

0.0520**
(6.7252)

0.0070*
(1.8316)

0.0703***
(14.3837)

0.0027***
(0.7406)

0.0499***
(6.5772)

0.0050*
(1.6397)

Ft 0.0118  
(0.4760)

0.0326**
(1.9530)

0.0102
(0.3467)

0.0343*
(1.7636)

0.0185***
(0.7566)

0.0382**
(2.0699)

-0.0024
(-0.0888)

0.0406**
(2.0038)

ECS -0.2197***
(-6.9076)

-0.1097***
(-5.4411)

-0.2678***
(-8.0568)

-0.1009***
(-4.9429)

-0.2082***
(-6.6050)

-0.1149***
(-5.6904)

-0.2479***
(-7.7259)

-0.1068***
(-5.2302)

GP 0.1728**
(2.1943)

-0.1533***
(-3.1385)

0.0405
(0.2957)

-0.1044*
(-1.8559)

0.1996***
(2.7223)

-0.21181***
(-4.0485)

0.1550
(1.1823)

-0.1647***
(-2.8110)

W*dep.
var. 0.0309* 0.2819*** 0.0789* 0.2630***

spat.aut. 00399* 0.3139*** 0.1089** 0.2449***

R2 0.4375 0.9562 0.4663 0.9577 0.4369 0.9527 0.4618 0.9549

LOG – L 281.4154 889.3516 293.7089 898.6014 281.8248 890.3261 296.3865 895.9965

Note: data in brackets () is T test value, *, **, *** denote the respective 10%, 5% and 1% significance levels, Matlab 7.11 was used 
as the model estimation.

Table7. Estimation of the spatial econometric model.



1157China’s Low Carbon Economic Growth...

advanced low-carbon facilities, and the energy utility 
efficiency and emission reduction capacity of enterprises 
can be improved as a result. 

With higher levels of education, the public have 
a stronger sense of environmental protection. They 
cannot only voluntarily preserve the environment, but 
also intelligently support low-carbon economic growth 
transformation.

Fourth, FDI had a positive estimation coefficient, 
and passed the 10% significance test, which means 
that the constant FDI attraction can accelerate the 
transformation of low-carbon economic growth. The 
ability to draw FDI was increasing continuously. Data 
shows that FDI has grown from $45.46 billion in 1998 
to $117.15 billion in 2013, recording a 2.6-times increase 
over the duration of the study [19]. The incessant 
injection of FDI aids the enhancement of the ability to 
reduce industrial emissions. The reasons for this are: 
on the one hand, FDI attraction is accompanied by the 
introduction of cutting-edge production technology and 
advanced industrial management ideas. The affiliated 
higher-level environmental protection standards have 
strong demonstration effects such as updating the local 
industrial carbon-emission standards in the host country. 
On the other hand, FDI helps companies provide more 
job vacancies. With more residents employed, the local 
income level can increase prominently, and a demand for 
higher environmental quality thus emerges.

Fifth, Ft exerted a positive effect on LCEGE at the 
10% significance level. The non-stop FT development 
generated an influx of advanced foreign low-carbon 
technologies and management experience, which, 
if adopted by corporations, will help lower energy 
consumption intensity. Especially, along with the 
deepened FT, the trade structure of imports and exports 
in China has converted from the low-technology, energy-
intensive composition of primary products to the low-
energy composition of mid-tech products. As a result, FT 
is not only conducive to decreasing the intensity of energy 
consumption, but helps regional foreign trade vendors 
realize the transformation to low-carbon products.

Sixth, ECS exerted a negative effect on LCEGE at 
the 1% significance level. In order to reduce and control 
carbon emissions, countries and regions across the world 
launched a “green energy revolution,” for which novel 
clean-energy technologies have been actively developed. 
Developing countries are notably at the forefront of the 
revolution, although China is still an energy-intensive 
country that relies largely on fossil energy, especially 
coal. In 2013, coal consumption accounted for 66.0% of 
the total energy consumption volume, while the combined 
percentage of hydro-energy, nuclear power, and wind 
energy was merely 9.8% [18]. Too much reliance on this 
high-carbon energy will not only increase regional carbon 
emissions, but it also impedes low-carbon economic 
transformation for a long time at the national level.

Seventh, GP exerted a negative effect on LCEGE 
at the 1% significance level. This double-edged sword 
caused more economic and environmental problems in 

China due to undue intervention. In particular, many 
local governments have long been GDP-oriented in 
a way that often prefers heavy investment in highly 
polluting industries in pursuit of quick results. The local 
environment continues deteriorating as a consequence. 
More deeply, undue government intervention in the 
market economy is a high restriction on the market’s  
role of resource allocation. The failure to realize na- 
tional low-carbon economic transformation is one of its 
causes.

Conclusions

LCEGE improvement is the key to sustainable 
economic development. With SBM, the provincial 
LCEGEs from 1998 to 2013 were measured. In contrast 
to previous TFP measurement studies, the establishment 
of the LCEGE evaluation system in this paper involves 
another important factor: carbon sink. Our research also 
covers the regional difference of LCEGEs and their spatial 
auto-correlation. Furthermore, by building up a spatial 
econometric model, the factors influencing LCEGE were 
also studied. The results showed that most provinces with 
high LCEGE were located in eastern coastal areas, while 
major low-LCEGE provinces were distributed in inland 
China. The spatial auto-correlation Moran I statistic result 
reflects a strong spatial auto-correlation between regional 
LCEGEs, and the simulation effect proved to be more 
intensive for neighboring provinces. Moreover, factors 
of industrial structure, energy consumption structure, 
and government policy exerted a remarkably negative 
effect on LCEGE; while technological innovation, 
human capital, FDI, and foreign trade provided a boost 
to LCEGE.

For the realization of sustainable economic 
development in China, the large amount of CO2 emitted is 
a heavy obstruction, and the combined measures of carbon 
emission intensity reduction and LCEGE improvement is 
therefore a necessary next step. The government should 
tighten carbon emission constraints by encouraging 
low-carbon transformation of conventional industrial 
production and accelerating its progress. This aims to 
gradually eliminate excess industrial capacity in China. 
At the same time, the government should intensify the 
efforts of technology research and development so as to 
develop favorable platforms for technological innovation, 
with the provision of related policy environments and 
technological subsidies. Another suggestion for the 
government is to promote universal education as a way 
to instill environmental awareness in the population. 
Furthermore, the opening-up level should be lifted, with 
two complementary strategies of raising barriers to FDI 
and relaxing local trade protectionism. Also, great efforts 
should be devoted to clean energy development and 
establishing sound government-leading environmental 
protection mechanisms. All these measures are helpful 
for LCEGE enhancement.
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